Global well-posedness of the short-pulse and sine–Gordon equations in energy space

نویسندگان

  • Dmitry Pelinovsky
  • Anton Sakovich
چکیده

We prove global well-posedness of the short-pulse equation with small initial data in Sobolev spaceHs for an integer s ≥ 2. Our analysis relies on local well-posedness results of Schäfer & Wayne [12], the correspondence of the short-pulse equation to the sine– Gordon equation in characteristic coordinates, and a number of conserved quantities of the short-pulse equation. We also prove local and global well-posedness of the sine– Gordon equation in an appropriate vector space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soliton evolution and radiation loss for the sine-Gordon equation.

An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parame...

متن کامل

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

New study to construct new solitary wave solutions for generalized sinh- Gordon equation

In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.

متن کامل

Global Well-posedness below the Charge Norm for the Dirac-klein-gordon System in One Space Dimension

We prove global well-posedness below the charge norm (i.e., the L 2 norm of the Dirac spinor) for the Dirac-Klein-Gordon system of equations (DKG) in one space dimension. Adapting a method due to Bourgain, we split off the high frequency part of the initial data for the spinor, and exploit nonlinear smoothing effects to control the evolution of the high frequency part. To prove the nonlinear sm...

متن کامل

Existence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph

The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008